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Abstract—In the multi-access edge computing environment, app vendors deploy their services and applications at the network edges,

and edge users offload their computation tasks to edge servers. We study the user-perceived delay-aware service placement and user-

allocation problem in edge environment. We model the MEC-enabled network, where the user-perceived delay consists of computing

delay and transmission delay. The total cost in the offloading system is defined as the sum of service placement, edge server usage

and energy consumption cost, and we need to minimize the total cost by determining the overall service-placing decision and user-

allocation decision, while guaranteeing that the user-perceived delay requirement of each user is fulfilled. Our considered problem is

formulated as a Mixed Integer Linear Programming problem, and we prove its NP-hardness. Due to the intractability of the considered

problem, we propose a LOCal-search based algorithm for USer-perceived delay-aware service placement and user-allocation in edge

environment, named LOCUS, which starts with a feasible solution and then repeatedly reduces the total cost by performing local-

search steps. After that, we analyze the time complexity of LOCUS and prove that it achieves provable guaranteed performance.

Finally, we compare LOCUS with other existing methods and show its good performance through experiments.

Index Terms—User-perceived delay, service placement, user allocation, edge computing, local search

Ç

1 INTRODUCTION

IN PAST years, we are witnessing the explosive growth of
mobile and IoT devices, such as smartphones, wearable

devices, self-driving vehicles, etc. Our daily life is exposed to
a rich variety of services and applications, some of which are
delay-sensitive and require low latency. Traditionally, the
widely used cloud computing technology provides central-
ized service support for the applications, and computation
tasks are offloaded to application vendors’ servers in the
cloud [1], [2]. However, the centralization of services leads to
a long distance between users and clouds, which tends to
increase the end-to-end latency. Thus, the existing cloud
computing paradigm cannot satisfy the stringent timeliness
requirements of the delay-sensitive applications.

Usually, network latency impacts application perfor-
mance, service quality and user experience. In order to meet
the requirements for low latency, a new paradigm of Multi-
access Edge Computing (MEC) [3], [4], [5] is proposed as an
extension of centralized clouds to tackle the challenge of net-
work latency. The main characteristic of MEC is to bring the
computation and storage resources to the edge networks.
Edge users are directly connected to the nearest service-
enabled edge networks, which can provide the capabilities of
computing and caching. Application vendors can deploy
their services and applications on the edge servers rather than
the remote clouds in order to significantly reduce the latency
from the cloud-hosted services to the end devices [6].

Service is an abstraction of applications hosted by the edge
servers and requested by edge users, which includes Aug-
mented Reality (AR), Virtual Reality (VR), facial identifica-
tion, connected cars [7] and so on. Service placement refers to
configuring the platform and storing the related libraries/
databases of a service on the edge server. Unlike the clouds
which have huge and diverse resources, edge servers only
have limited computing and storage resources to allow a
small number of services to be placed [8]. Different kinds of
services consume different amounts of resource and then
result in different costs of service placement, which poses the
challenge to tackling the service placement problem.

As shown in Fig. 1, MEC-enabled base stations each
equipped with an edge server are densely distributed in the
edge environment. The geographical coverage areas of
them usually partially overlap in case of non-service areas
where users fail to get service from any edge server [9], [10].
Each user in the overlapping will connect to one of MEC-
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enabled base stations covering them and be allocated to the
associated edge server. Compared to cloud servers, there
are limited computing resources on edge servers due to
their size limit [11]. Thus, it is important to determine an
effective user-to-edge-server allocation to prevent the waste
of edge server resources.

When determining the user-to-edge-server allocation, the
two popular paradigms of task offloading [3] include binary
offloading and partial offloading. The paradigm of binary
offloading applies for the highly integrated task, which can-
not be partitioned and have to be offloaded as a whole to
only one edge server. However, in practice, many applica-
tions are composed of multiple procedures or involve proc-
essing chunks of data (e.g., the application of vehicle
counting in traffic surveillance videos), whichmakes it possi-
ble to partition the computation task into multiple parts and
offload them to different edge servers for parallel execution.

Although service placement [9], [12], [13], [14], [15], [16],
[17] and user allocation [18], [19], [20], [21] have received
much attention in research field, a joint design of them has
not been studied adequately. Some other works [22], [23],
[24], [25], [26] have tackled the joint design of service place-
ment and user allocation, but fail to consider the aspect of
constrained user-perceived delay. The rest [27], [28], [29],
[30] have already taken the user-perceived delay into con-
sideration , but they fail to achieve the approximation guar-
antee by rigorous proof.

In this paper, we study the user-perceived delay-aware
service placement and user allocation problem in MEC. The
main contributions of this paper are as follows.

� We present the modeling of MEC-enabled network,
user-perceived delay and total cost of task offloading
system, based on which we consider the problem of
user-perceived delay-aware service placement and
user allocation.

� We formulate the user-perceived delay-aware ser-
vice placement and user allocation problem as a
mixed integer linear programming problem which
aims at minimizing the total cost of task offloading
system, and we prove that it is NP-hard by reducing
another well-known NP-hard problem to it.

� Due to theNP-hardness of the consideredproblem, it is
impossible to find the optimal solution in polynomial
time. To effectively deal with its high complexity, we

propose LOCUS, which is implemented based on three
local-search operations New, Swap and Delete. We ana-
lyze the time complexity of LOCUS and prove that it
achieves an approximation factor of ð8þ dÞ for a suffi-
ciently large constant d.

� In the experiment, we use 20 Raspberry Pis and 5
PowerEdge R740s to simulate the edge users and
edge servers, respectively; meanwhile, we design 5
kinds of services including word counting, word
finding, vehicle counting in a video, pedestrian
counting in a video and object detection in a video.
Based on the real-world dataset derived from the AI
City Datasets 2019 [31], we compare our proposed
algorithm LOCUS with 4 existing designs. The
experiment results show that LOCUS outperforms
other methods and significantly reduces the total
cost of task offloading system.

The remainder of this paper is organized as follows. We
review the related work in Section 2. We introduce the sys-
tem and notations in Section 3. In Section 4, we formulate
the considered optimization problem and analyze its com-
plexity. After that, we propose a polynomial-time algorithm
LOCUS in Section 5 and then analyze its approximation
guarantee in Section 6. Through some experiments, we com-
pare our proposed algorithm with other existing designs
and evaluate its performance in Section 7. Finally, we dis-
cuss some possible future works and conclude the paper in
Section 8.

2 RELATED WORK

We summarize some studies by the following categories
and highlight their drawbacks compared with our work.

2.1 Multi-Access Edge Computing

Xu et al. [9] investigated the dynamic service placement in
MEC, and proposed an online algorithm which jointly opti-
mizes task offloading and dynamic service caching to tackle
the unknown system dynamics, service heterogeneity and
decentralized coordination. Chen et al. [16] studied the prob-
lem of collaborative service placement inMEC and proposed
an efficient decentralized algorithm where the service place-
ment decisions of BSs are optimized. Xu et al. [17] designed a
distributed game-theoretical mechanism for the problem of
service placement, where resources are shared among the
service providers and the social cost of them is minimized.
Zhan et al. [19] designed a decentralized algorithm for user
allocation and computation offloading, where game theory
is applied in the algorithm design and users choose their off-
loading decisions independently. Chen et al. [21] formulated
the task offloading and user allocation problem in MEC as a
minority game, and proposed an minority game based
scheme converging to a near-optimal point. Lai et al. [18] uti-
lized the distributed nature of edge computing and proposed
an efficient game-theoretic approach to tackle the problem of
user allocation in theMEC environment.

These works have studied the issues related to service
placement or user allocation in the multi-access edge com-
puting environment, but fail to investigate the joint design
of service placement and user allocation.

Fig. 1. User 1 offloads its task A to the only edge server 1, while user 2
divides its task B into two parts and offloads them to edge server 1 and 2.
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2.2 Service Placement and User Allocation

Behravesh et al. [22] proposed a heuristic algorithm to tackle
the problem of joint user association, SFC placement, and
resource allocation, employing mixed-integer linear pro-
gramming techniques. Poularakis et al. [23] studied the joint
optimization of service placement and request routing in
MEC environment and proposed an algorithm that achieves
close-to-optimal performance using randomized rounding.
Yang et al. [24] designed a Benders decomposition-based
algorithm to solve the problem of placing cloudlets and allo-
cating requested tasks to cloudlets and public cloud with
the minimum total energy consumption. Yao et al. [25]
investigated how to deploy the servers in a cost-effective
manner without violating the service quality, and a low-
complexity heuristic algorithm was invented to address it.
Tran et al. [26] considered the cost-aware joint service cach-
ing and task offloading assignment problem, and designed
a polynomial-time iterative algorithm to tackle it.

However, these related works fail to consider the aspect
of constrained user-perceived delay when tackling the joint
design of service placement and user allocation.

2.3 User Perceived Delay

ShuffleDog [27] was implemented on commercial smart-
phones to significantly reduce the user-perceived latency of
foreground apps in running with aggressive background
workload. Zhang et al. [28] proposed queuing models for
online service systems with proactive serving capability
and characterize the user delay reduction by proactive serv-
ing. Jing et al. [29] investigated the content placement and
delivery strategies in the cache-enabled wireless networks,
which can characterize the end-to-end user-perceived delay
and data rates simultaneously. Huang et al. [30] proposed a
delay-tolerant wireless caching system that takes both the
feedback delay and users’ availability into consideration.

These works have already taken the user-perceived delay
into consideration. However, they fail to achieves the
approximation guarantee by rigorous proof.

3 SYSTEM MODEL

Similar to [9], [26], [32], we divide time into many time slots,
each of which has a duration matching the timescale where
service placement and user allocation decisions can be
updated. In the following, we consider the user-perceived
delay-aware service placement and user allocation in a

specific time slot where the index is omitted for the sake of
simplicity.

The system architecture considered in this paper is
depicted in Fig. 2. On the client side, users upload their
user-related information (e.g., input data size, workload,
user-perceived delay requirement) to the server application;
afterwards, they receive the user-allocation decisions in
turn. The offloading controllers on the client side allocate
users to the edge servers available and offloading users’
tasks to the corresponding edge servers.

In the server application, our proposed local-search
based algorithm LOCUS (which will be introduced in detail
in Section 5) is invoked, and it takes the information about
edge servers and services (e.g., computing capacity of edge
servers, workload upper limit for edge servers and set of
services) as the input. Based on the results calculated from
LOCUS, the service-placing controller places services at the
corresponding edge servers and send the user-allocation
decisions back to the clients.

In the rest of this section, we present the modeling of
MEC-enabled network, user-perceived delay and total cost
of task offloading system. Some important notations used
for model are listed in Table 1.

3.1 MEC-Enabled Network

We consider a MEC-enabled wireless network consisting of
M edge servers, denoted asMM¼ f1; 2; . . . ;Mg. As shown in
Fig. 1, each edge serverm is accessible via a base station cov-
ering a specific geographical area CoverðmÞ and can provide
computing services to edge users in its coverage area. We
assume that there are S services, denoted as SS ¼ f1; 2; . . . ; Sg,
and each user n in the set of edge usersNN ¼ f1; 2; . . . ; Ng has
a task requiring one of these services to be executed.

Each user’s task has its own computation demand and
input data size. We let the workload and input data size of
each user n’s task be ln [CPU cycles] and bn [bits], respec-
tively. In the MEC-enabled network, each edge user can be

Fig. 2. The architecture of the edge-based service placement and user
allocation system.

TABLE 1
Major Notations Used for Model
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in the coverage area of multiple edge servers and it can
choose to offload its task to these edge servers. As consid-
ered in [9], [26], [32], we assume that each user can split its
task into multiple portions and offload each of them to dif-
ferent edge server, and that the computation demand of
each user’s task is proportional to the input data size. We
define the continuous user-allocation variable as xn;m 2
½0; 1� to denote the fraction of user n’s task offloaded to
serverm. Thus, we have

X
m2MM xn;m ¼ 1; 8n 2 NN : (1)

Then we can calculate that the workload and input data size
of user n’s task offloaded to the edge server m are xn;mln
and xn;mbn, respectively.

Following the ideas in [9], [20], [33], though the multi-
access edge computing server may perform parallel proc-
essing by allocating its computing capacity to the multiple
computing tasks that have been offloaded to it, we reason-
ably assume that each user’s task on the edge server m can
be processed with computing capacity Fm [CPU cycles/s]
since the workload on each edge server is limited (i.e., Lm

[CPU cycles]) in a specific time-slot, which means that the
total sum of the task workloads offloaded to edge server m
in the specific time-slot cannot exceed Lm. Thus, the limited
computing resources constraint of edge server m can be
showed as

X
n2NN xn;mln � Lm; 8m 2 MM: (2)

Besides, we define the binary service-placing variable as
ym;s 2 f0; 1g, where ym;s ¼ 1 if service s is placed at edge
server m and ym;s ¼ 0 otherwise. Edge users requesting ser-
vice s can offload their tasks to serverm only when ym;s ¼ 1.
Thus, it must hold that

xn;m � ym;s; 8n 2 NN s; (3)

where NN s � NN represents the set of edge users requesting
service s. For ease of exposition, we use XX , fxn;m : n 2
NN ;m 2 MMg and YY , fym;s : m 2 MM; s 2 SSg to denote the
overall user-allocation decision and overall service-placing
decision, respectively.

3.2 User-Perceived Delay

Similar to the works in [15], [34], [35], the user-perceived
delay in the MEC environment is mainly determined by
computing delay and transmission delay.

Computing Delay. As mentioned previously, the comput-
ing capacity of each edge server m is Fm [CPU cycles/s] in
the specific time slot. Thus, the computing delay for user n
on the edge server m 2Mn can be calculated as
Dc

n;m ¼ xn;mln=Fm.
Transmission Delay. To keep the reasonable complexity of

the physical-layer wireless channels, we consider that the
users and edge servers use single antenna for transmission,
and that the uplink channel gain hn;m between user n and
edge server m is constant based on the best channel gain
conditions of the users during the specific task offloading
time-slot [9], [26], [36].

Additionally, we consider that neighboring edge servers
are assigned orthogonal frequency and employ enhanced
inter-cell interference coordination techniques, which is
proposed in LTE Rel. 10 [37]. Thus, each user can occupy an
orthogonal subchannel with bandwidth w. Then we can cal-
culate the uplink data rate [bits/s] between user n and edge
server m, according to the Shannon-Hartley formula [33],
[38], [39], as

rn;m ¼ wlog 2ð1þ pnhn;m=s
2Þ; (4)

where the transmission power pn is the input parameter
determined by each user n, s2 is the background noise vari-
ance, and pnhn;m=s

2 is the signal-to-noise ratio of the uplink
channel between user n and edge serverm.

Thus, when user n is connected to edge server m 2Mn,
the transmission delay for it can be calculated as

Dt
n;m ¼

xn;mbn
wlog 2ð1þ pnhn;m=s2Þ : (5)

Total User-Perceived Delay. Based on the computing delay
and transmission delay for each user n, we calculate the
user-perceived delay as

Dn ¼ max
m2MMn

fDc
n;m þDt

n;mg; (6)

where we defineMMn , fm 2 MMjn 2 CoverðmÞg, and user n
can offload the task to its neighboring edge servers inMMn.
It is worth noting that we neglect the delay for the edge
servers to send back the results of the computation as in
[26], [36], [40], [41], due to the fact that in many MEC-
enabled services (e.g., video analysis and massive text min-
ing), the size of the computation result is much smaller than
the input data size.

For each user and the service it requests, too high user-
perceived delay is not acceptable. Thus, it must hold that

Dn � dn; 8n 2 NN ; (7)

where dn means user n’s perceived delay requirement.

3.3 Total Cost of Task Offloading System

Similar to previous work [9], [26], different user allocation
and service placing decisions incur different service place-
ment, edge server usage and energy consumption costs in
the specific time-slot.

3.3.1 Service Placement Cost

Due to the rapid development of storage technology [40],
we consider that the available space for service placing at
the edge servers is unlimited, while introducing the cost
associated with the service placement. This cost accounts
for the monetary cost imposed by network infrastructure or
service providers for storage space utilization at edge serv-
ers. Thus, the service placement cost is calculated as

Cp ¼
X

m2MM
X

s2SS ym;sc
p
m;s; (8)

where cpm;s represents the cost to place service s at edge
server m. Generally, cpm;s depends on the storage ability of
serverm and computing complexity of service s.
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3.3.2 Edge Server Usage Cost

When the processing load is offloaded to the edge servers,
the edge server usage cost accounts for the computation
consumption, the fees of which are charged by network
infrastructure or service providers. Thus, the edge server
usage cost is defined as

Cu ¼
X

m2MM
X

n2NNm
xn;mlnc

u
m; (9)

where we useNNm , fn 2 NN jn 2 CoverðmÞg to denote the set
of users within edge server m’s coverage, and cum represents
the cost associated with execution of one unit workload on
the edge serverm.

3.3.3 Energy Consumption Cost

Energy consumption plays an important role for the users in
the multi-access computing environment [42], and here we
use the monetary cost of energy consumption to represent
its importance. As mentioned previously, when user n is
connected to server m 2 MMn, the transmission delay can be
calculated as Eq. (5). Thus, the total energy consumption
cost for all users is

Ce ¼
X
m2MM

X
n2NNm

xn;m
pnbn

wlog 2ð1þ pnhn;m=s2Þ c
e; (10)

where the transmission power pn is the input parameter
determined by each user n, and the monetary cost for one
unit of energy consumption is set to ce.

3.3.4 Total Cost

Considering that the monetary costs of service placement,
edge server usage and energy consumption are the most
important in our task offloading system, we get the total
cost based on them as

Ctotal ¼ Cp þ Cu þ Ce: (11)

We will give the problem formulation in the next section,
where the total cost in the task offloading system will be
minimized, while guaranteeing that the user-perceived
delay requirement of each user is satisfied.

4 PROBLEM FORMULATION AND ANALYSIS

In this section, we formulate our considered problem and
then show its intractability by complexity analysis.

4.1 Problem Formulation

Given the user-allocation decision XX and service-placing
decision YY, we can get the total cost in the task offloading
system as WðXX ;YYÞ ¼ Ctotal in Eq. (11). Thus, the problem of
user-perceived delay-aware joint service placement and
user allocation assignment which aims at minimizing the
total cost can be formulated as a mixed integer linear pro-
gramming problem

P1 : min
XX ;YY

Cp þ Cu þ Ce
(12a)

s.t. xn;m 2 ½0; 1�; 8n 2 NN ;8m 2 MM; (12b)

ym;s 2 f0; 1g; 8m 2 MM; 8s 2 SS; (12c)

P
m2MMn

xn;m ¼ 1; 8n 2 NN ; (12d)

xn;m � ym;s; 8n 2 NN s; (12e)

P
n2NNm

xn;mln � Lm; 8m 2 MM; (12f)

Dc
n;m þDt

n;m � dn; 8n 2 NN ; 8m 2MM: (12g)

In the formulated problem P1 above, constraints (12b)
and (12c) specify the definitional domains of the user-alloca-
tion decision and service-placing decision variables, respec-
tively. Constraint (12d) ensures that all of the workload
from each user will be executed collectively by the edge
servers. Constraint (12e) ensures that the users requesting
service s can offload their tasks to server m only when ser-
vice s has been placed on server m. Constraint (12f) guaran-
tees that the total sum of the task workloads offloaded to
each edge server cannot exceed its workload upper limit.
Constraint (12g) guarantees the user-perceived delay
requirement should be satisfied.

4.2 Complexity Analysis

Proposition 1. P1, the problem of user-perceived delay-aware
joint service placement and user allocation assignment which
aims at minimizing the total cost is NP-hard.

Proof. We first briefly describe the well-known NP-hard
problem, capacitated facility location problem (CFLP)
[43]. Then we reduce CFLP to our considered problem P1

and show that problem P1 is also NP-hard.
�1 Desciprtion of CFLP. In the capacitated facility loca-

tion problem, suppose that there are N customers and M

facilities. We let an denote the demand of customer n,
and each customer can divide its demand into multiple
parts, which are sent to different facilities for production;
meanwhile, we suppose that each facility m has a pro-
duction capacity um, which is the maximum amount of
product that can be produced by facilitym.

We use fm to denote the cost of opening facility m and
gmn means the cost of shipping the product from facility
m to customer n. Thus, the total cost is the sum of the
facility-opening cost and product-shipping cost. In order
to meet some fixed demands at minimum cost, we need
to decide (i) which of the M facilities to open and (ii)
which open facilities to use to supply the N customers.
�2 Reducing CFLP to P1. By writing each instance of

CFLP as a special case of problem P1, we can reduce
CFLP to problem P1:

� The number of services in problem P1 is set to 1,
and each user’s perceived delay requirement in
problem P1 is set large enough.

� The consumer n with demand an in CFLP is
mapped to the user n with computation demand
ln in problem P1.

� The (opened) facility m with production capacity
um in CFLP is mapped to the edge server m
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(where the service is placed) with workload upper
limit Lm in problem P1.

� The cost of opening facilities in CFLP is mapped
to the cost of placing services in problem P1.

� The cost of shipping products in CFLP is mapped
to the total cost of edge server usage and energy
consumption in problem P1.

Hence, NP-hard problem CFLP can be reduced to our
considered problem P1, and problem P1 is NP-hard. tu

Since problem P1 is NP-hard, we cannot obtain the exact
solution to it in polynomial time. In the next section, we pro-
pose an approximate algorithm for it, which can give the
suboptimal solution in the polynomial time.

5 PROPOSED ALGORITHM

In this section, we propose a polynomial-time local-search
algorithm which achieves an approximation factor of ð8þ
dÞ, for a sufficiently large constant d. The local-search based
algorithm first starts with an arbitrary feasible solution and
then repeatedly improves the solution by performing local
search steps. Within a polynomial number of local search
steps, we can obtain a suboptimal solution achieving the
desired approximation factor.

Algorithm 1. LP Solver for P2ðYYÞ
Input: Y
Output: XX

1 Solve problem P2ðYYÞ using interior point method in polyno-
mial time;

2 Obtain the minimized total cost wðY Þ;
3 Output optimal user-allocation decision XX ;

5.1 LP Solver for a Simplified Problem

To better describe the local search operations later, we first
formulate a simplified problem from the original problem
P1. For problem P1, we need to obtain a solution of overall
user-allocation decision XX and service-placing decision YY.
And if we fix the decision YY, the original problem P1 can be
simplified as a Linear Programming (LP) problem. Thus,
we consider a user-allocation problem P2ðYYÞ where the ser-
vice-placing decision YY is given, and we determine the
user-allocation decision XX to minimize the total cost
WYYðXXÞ ¼ Ctotal. Then the simplified problem P2ðYYÞ can be
formulated as

P2ðYYÞ : min
XX

Cp þ Cu þ Ce (13a)

s.t. xn;m 2 ½0; 1�; 8n 2 NN ;8m 2 MM; (13b)P
m2MMn

xn;m ¼ 1; 8n 2 NN ; (13c)

xn;m � ym;s; 8n 2 NN s; (13d)P
n2NNm

xn;mln � Lm; 8m 2 MM; (13e)

Dc
n;m þDt

n;m � dn; 8n 2 NN ; 8m 2MM: (13f)

Different from problem P1, we only think about the user-
allocation decision variables in problem P2ðYYÞ. Furthermore,

since problem P2ðYYÞ is an LP problem, it can be efficiently
solved using interior point method (e.g., implemented in
SciPy or Cplex) in polynomial time.

For convenience, we use YY ¼ fðm; sÞ : ym;s ¼ 1;m 2
MM; s 2 SSg to represent the set of services that have been
placed at the corresponding server, and it can be deter-
mined by the overall service-placing decision YY. As shown
in Algorithm 1, we input the set YY of placed services and
then get the optimal user-allocation decision XX . Besides, we
use wðYY Þ to denote the minimized total cost when the set of
placed services is fixed at YY in Algorithm 1. Therefore,
based on Algorithm 1, if we have obtained the optimal ser-
vice-placing decision YY�, we can solve the considered prob-
lem P1 efficiently.

5.2 Three Local-Search Operations

To obtain the (near-)optimal service-placing decision, we
design three local-search operations to let the service-plac-
ing decision YY get closer to the optimum step by step. Before
describing the three local-search operations, we introduce
the concept of neighborhood in problem P1, which will be
used later in this section.

Definition 1 (Neighborhood). In problem P1, the neighbor-
hood of YY is defined as

NeiNeiðYY Þ ¼ fTT � FF : jTT � YY j � 1; jYY � TT j � 1g; (14)

where FF is fðm; sÞ : m 2 MM; s 2 SSg.
When we apply a local-search based approach to the con-

sidered problem P1, if we are given a current feasible solu-
tion corresponding to a set YY of placed services, the local-
search operations will traverse the neighborhood of YY and
set the next new feasible solution as a set TT of minimum
cost inNeiNeiðYY Þ. Since the neighborhood of YY contains a poly-
nomial number of solutions and the cost of each solution
can be calculate via Algorithm 1 in polynomial time, the
local-search operations mentioned above can be performed
efficiently. Based on Definition 1, we divide the neighbor-
hood of YY into 3 subsets:

� SubSub1 ¼ fTT � FF : jTT � YY j ¼ 1; jYY � TT j ¼ 0g;
� SubSub2 ¼ fTT � FF : jTT � YY j ¼ 1; jYY � TT j ¼ 1g;
� SubSub3 ¼ fTT � FF : jTT � YY j ¼ 0; jYY � TT j ¼ 1g.
Next we design three local-search operations including

New, Swap and Delete. From the set YY of placed services, we
can move to the set SubSub1, SubSub2 and SubSub3 through operation
New, Swap and Delete, respectively.

Algorithm 2. Local-Search Operation New

Input: Set YY of placed services
Output: bstNeighborbstNeighbor, cstReduce

1 bstNeighborbstNeighbor ? ;
2 cstReduce 0;
3 for each ðm; sÞ 2 fðm; sÞ : m 2 MM; s 2 SSg � YY do
4 if wðYY Þ � wðYY [ fðm; sÞgÞ > cstReduce then
5 bstNeighborbstNeighbor YY [ fðm; sÞg;
6 cstReduce wðYY Þ � wðbstNeighborbstNeighborÞ;

1586 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 7, JULY 2022

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on December 19,2021 at 02:06:11 UTC from IEEE Xplore.  Restrictions apply. 



New. As show in Algorithm 2, we design the local-search
operation New. Through New, we add a new element to set
YY , which means that a new service will be placed at some
edge server. From line 3 to 8, we traverse the neighborhood
of YY to find the best neighbor that reduces the total cost
most. Finally, we get the best neighbor bstNeighborbstNeighbor in SubSub1,
and the corresponding cost reduction is cstReduce.

Swap. In Algorithm 3, we describe the local-search opera-
tion Swap. Through Swap, we replace an element in YY with
an element not in YY , which means that a placed service will
be removed and a new service will be placed at some edge
server. Thus, we traverse NeiNeiðYY Þ to find the appropriate to-
be-added and to-be-removed services in lines 3-10. We
finally obtain the best neighbor bstNeighborbstNeighbor in SubSub2 and
maximize the cost reduction.

Algorithm 3. Local-Search Operation Swap

Input: Set YY of placed services
Output: bstNeighborbstNeighbor, cstReduce

1 bstNeighborbstNeighbor ? ;
2 cstReduce 0;
3 for each ðm; sÞ 2 YY do
4 for each ðm0; s0Þ 2 fðm; sÞ : m 2 MM; s 2 SSg � YY do
5 if wðYY Þ � wðYY [ fðm0; s0Þg � fðm; sÞgÞ > cstReduce then
6 bstNeighborbstNeighbor YY [ fðm0; s0Þg � fðm; sÞg;
7 cstReduce wðYY Þ � wðbstNeighborbstNeighborÞ;

Delete. The design of operation Delete in Algorithm 4 is
similar to New and Swap. The neighborhood of YY is tra-
versed to find the optimal to-be-removed service which
maximizes the cost reduction cstReduce in lines 3-10, and
the best neighbor bstNeighborbstNeighbor can be obtained.

Algorithm 4. Local-Search Operation Delete

Input: Set YY of placed services
Output: bstNeighborbstNeighbor, cstReduce

1 bstNeighborbstNeighbor ? ;
2 cstReduce 0;
3 for each ðm; sÞ 2 YY do
4 if wðYY Þ � wðYY � fðm; sÞgÞ > cstReduce then
5 bstNeighborbstNeighbor YY � fðm; sÞg;
6 cstReduce wðYY Þ � wðbstNeighborbstNeighborÞ;

5.3 Local-Search Algorithm LOCUS

Now we are ready to describe the local-search algorithm
LOCUS in Algorithm 5. In step 1, we initialize the service
placement decisions and calculate the initial total cost. As
shown in lines 1-5, we place the services that are requested
by users in NNm at each edge server m. Then in step 2,
LOCUS repeatedly invokes one of the three local-search
operations New, Swap and Delete designed above, as long as
the cost reduction in each step is sufficiently large. In Algo-
rithm 5, the function pðM;SÞ is a polynomial inM 	 S, where
M is the edge server number and S is the service number
(e.g., we can choose pðM;SÞ ¼M2S2). It is worth noting that
when LOCUS is being implemented, the three basic opera-
tions New, Swap and Delete invoked in LOCUS can be per-
formed in parallel, and within each iteration, the operation
reducing the cost most will be selected. Besides, in each

basic operation New, Swap or Delete, the operations of calcu-
lating wð	Þ can also be performed in parallel.

Algorithm 5. LOCUS for User-Perceived Delay-Aware
Service Placement and User Allocation

1 %Step 1:Initialize service placement decisions;
2 YY ¼ ? ;
3 for eachm 2M do
4 for each n 2 NNm do
5 YY  YY [ fðm; srnÞg;
6 %Step 2:Iterative local search for (near-)optimum;
7 repeat
8 local success False;
9 ðbstNeighborbstNeighbor; cstReduceÞ  NewðYY Þ;
10 if cstReduce 
 wðYY Þ=pðM;SÞ then
11 YY ; local success bstNeighborbstNeighbor; True;
12 Goto line 7;
13 ðbstNeighborbstNeighbor; cstReduceÞ  SwapðYY Þ;
14 if cstReduce 
 wðYY Þ=pðM;SÞ then
15 YY ; local success bstNeighborbstNeighbor; True;
16 Goto line 7;
17 ðbstNeighborbstNeighbor; cstReduceÞ  DeleteðYY Þ;
18 if cstReduce 
 wðYY Þ=pðM;SÞ then
19 YY ; local success bstNeighborbstNeighbor; True;
20 until local success ¼ False

6 PERFORMANCE ANALYSIS

The relationships between all the lemmas and theorems are
illustrated in Fig. 3, where the main result regarding the
optimization objective with approximate guarantee
achieved by LOCUS is shown in Theorem 1 and the result
about the time complexity is shown in Theorem 2.

For convenience, we use weðYY Þ to represent the sum of the
edge server usage cost and energy consumption cost, and use
wsðYY Þ to represent the service placement cost when Algo-
rithm 1 is applied to the problem P2ðYYÞ, where the set of placed
services is YY . And we use YY � to denote the set of placed serv-
ices corresponding to the optimal service-placing decisionYY�.

Before we analyze the approximation guarantee of
LOCUS, we refer to the work [44] and give two lemmas, as
shown in Lemmas 1 and 2. The two lemmas can be obtained
based on the difference graph that captures the differences in an
arbitrary solution ðXX ;YYÞ and the optimal solution ðXX�;YY�Þ.
Specifically, we consider the flow XX as a flow in a bipartite
graphwith vertices corresponding to services and edge users.
In particular, there are xn;m units flowing from service ym;s to
edge user n along each edge ðym;s; nÞ. In order to compare the
arbitrary solution ðXX ;YYÞ with the optimal solution ðXX�;YY�Þ,
we consider the flow XX � XX� whereby each edge ðym;s; nÞ has

Fig. 3. Relationship between proposed problems, algorithms and
theorems.
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xn;m � x�n;m units of flow. The difference graph can bound the
cost of reassigning the computation load from the currently
cached services to the services cached in the optimal solution,
and the bounded cost difference is described in
Lemmas 1 and 2. For brevity, we here omit the detailed proof
of Lemmas 1 and 2, which can be referred to in [44].

Lemma 1 ([44]). If there is no ðm; sÞ which is not in the current
YY , such that

wðYY Þ � wðYY [ fðm; sÞgÞ 
 wðYY Þ=pðM;SÞ; (15)

then

weðYY Þ < wðYY �Þ þMSwðYY Þ=pðM;SÞ; (16)

Lemma 2 ([44]). If there is no ðm; sÞ in the current YY to perform
the Swap or Delete operation so that the total cost is reduced
by at least wðYY Þ=pðM;SÞ, then

wsðYY Þð1� ðMSÞ2
pðM;SÞÞ < 5wðYY �Þ þ 2weðYY Þ þ wðYY Þ

MS
: (17)

Theorem 1. The solution obtained from LOCUS has the total
cost at most 8þ d times that of the optimal cost in problem P1,
for a sufficiently large constant d.

Proof. According to Algorithm 5, when LOCUS terminates
after some local-search operations, there is no local-search
operationNew, Swap orDelete so that the total cost can be
reduced by at least wðYY Þ=pðM;SÞ any more. Thus, based
on the two lemmas above, inequations (16) and (17) are
satisfied. Plugging (16) into (17), we get

wsðYY Þ 1� ðMSÞ2
pðM;SÞ

 !
< 7wðYY �Þ þ 2MSwðYY Þ

pðM;SÞ þ
wðYY Þ
MS

: (18)

Based on inequation (16), we can also get

weðYY Þð1� ðMSÞ2
pðM;SÞÞ < wðYY �Þ þMSwðYY Þ

pðM;SÞ : (19)

Then we let inequation (18) plus (19), and we have

wðYY Þ 1� ðMSÞ2
pðM;SÞ

 !
� 8wðYY �Þ þ 3MSwðYY Þ

pðM;SÞ þ
wðYY Þ
MS

: (20)

Rearranging, we obtain

wðYY Þ
wðYY �Þ < 8

1

ð1� ðMSÞ2
pðM;SÞ � 3MS

pðM;SÞ � 1
MSÞ

: (21)

Therefore, for a sufficiently large constant d satisfying

d 
 8
1

ð1� ðMSÞ2
pðM;SÞ � 3MS

pðM;SÞ � 1
MSÞ
� 1

0
@

1
A; (22)

the approximate optimal solution obtained from LOCUS
has the total cost at most 8þ d times that of the optimal
cost in problem P1. tu

Theorem 2. The proposed algorithm LOCUS terminates after at
most OðpðM;SÞlog Wini

Wopt
Þ local-search operations, where Wini is

the initial total cost obtained in step 1 of LOCUS and Wopt is
the optimal total cost of problem P1.

Proof. We let R be the number of local-search operations
which are performed in LOCUS and let Wk be the current
total cost of problem P1 after the kth operation is per-
formed. Specifically, we set W0 ¼Wini. According to
Algorithm 5, it holds that

Wk �Wkþ1 
 Wk

pðM;SÞ ; 8k 2 f0; 1; 2; . . . ; R� 1g: (23)

Thus, we can obtain

Wk

Wkþ1

 1

1� 1
pðM;SÞ

; 8k 2 f0; 1; 2; . . . ; R� 1g: (24)

LOCUS terminates after R local-search operations and
we get the (near-)optimal total cost of P1. Thus, we have

Wini

Wopt

 W0

WR
¼W0

W1
	W1

W2
	 . . . 	WR�1

WR

 1

1� 1
pðM;SÞ

 !R

: (25)

Besides, according to the definition of natural constant e,
it holds that

1� 1

pðM;SÞ
� ��pðM;SÞ


 e: (26)

Combining inequations (25) and (26), we obtain

R � pðM;SÞlog Wini

Wopt
: (27)

Therefore, the proposed algorithm LOCUS terminates
after at most OðpðM;SÞlog Wini

Wopt
Þ local-search operations,

which is polynomial in MS, and it is shown that LOCUS
has polynomial-time complexity. tu

7 EXPERIMENTS AND RESULT ANALYSIS

In this section, we evaluate the performance of our pro-
posed algorithm LOCUS through experiments with various
settings. Besides, we compare our design with some other
existing approaches.

7.1 Experiment Settings

Similar to the previous works [20], [21], we first consider a
multi-access edge computing system containing 20 users and
5 edge servers. As demonstrated in Fig. 4, we use 20 Rasp-
berry Pis and 5 PowerEdge R740s (Silver 4210R 2.4G, 2*16GB
RDIMM) to act as the users and edge servers, respectively.
We design 5 kinds of services as follows. Word counting:
counts the occurrences of a specific word in a large amount of
text; Word finding: finds the positions of a specific word in a
large amount of text; Vehicle counting in a video: counts the
number of vehicles in the traffic surveillance video; Pedestrian
counting in a video: counts the number of pedestrians in the
traffic surveillance video; Object detection in a video: detects a
lost child in the store surveillance video. The videos we used
are mostly derived from the AI City Datasets 2019 [31] (hun-
dreds of video clips, 15 minutes for each clip) for video
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analytics upon YOLOv3[45]. The testbed mentioned above is
used to test the effectiveness of our proposed algorithm.

Furthermore, to test the efficiency and scalability of
LOCUS, we set and vary some parameters in the experi-
ments. Based on the performance of hardware devices, the
computing capacity Fm for each edge server m is assigned
from the set f50; 100; 150g Gcycles/s, and the workload
upper limit Lm for edge server m is set to 900 Gcycles in the
specific time slot. For the parameters in Shannon-Hartley
formula, we refer to the works [20], [46]. The channel band-
width is set to 20 MHz, and the background noise is set to
50 dBm. In a specific time-slot, each user holds the transmis-
sion power pn � Nð1; 0:1ÞW . We set the uplink channel gain
hn;m ¼ ðdistn;mÞm, where distn;m is the distance between user
n and edge serverm, and the path loss factor m is set to 4.

Beside, according to [15], each user n’s perceived delay
requirement dn is uniformly distributed in [1,10] seconds.
The optimization objective in problem P1 consists of three
parts: service placement cost, edge server usage cost and
energy consumption cost, andwe assume that the three types
of cost have almost the same influence on the overall optimi-
zation objective, as studied in [20], [26]. Based on the optimal
solution derived from the MILP solver (e.g., Cplex, Mosek),
we observe that the ratio of the number of placed service,
units of executed workload and units of energy consumption
is about 1 : 200 : 4 on average. To balance the impacts of the
three different costs, we set cpm;s ¼ 1, cum ¼ 1=200 and ce ¼
1=4. We compare our design LOCUSwith 4 other schemes:

� Randomized Rounding Scheme (RRS): Similar to the
design in [17], RRS first relaxes constraint (12c) into
0 � ym;s � 1, and then rounds the calculated frac-
tional solution to an integer solution by using a ran-
domized rounding technique.

� Greedy Scheme (GS): Traversing all users in a certain
order, GS determines the way of service placement
and user allocation for each user, which minimizes
the total cost increase.

� All-service Scheme (AS): Assuming all the services
are placed at each edge server, AS first solves the
user allocation problem P2ðYÞ in polynomial time,
and then removes the services from the edge server
wherever there is no corresponding offloaded task.

� OPTimal Scheme (OPTS): OPTS offers a baseline as it
directly uses the MILP solver to solve P1.

7.2 Experiment Results

Cost Reduction and User-Perceived Delay. We first test the
effectiveness of LOCUS and derive the cost reduction ver-
sus iterations in Fig. 5a. It shows that with the increase of

iterations, the total cost in the task offloading system drops
gradually. For the case of 2 edge servers and 4 services, we
observe that the total cost needs more time to converge.
However, when there are fewer edge servers and services,
the cost easily becomes stable. Furthermore, we notion that
the converged cost can be closer to the optimum when the
numbers of edge servers and services are larger since there
are more chances for local-search operations to reduce the
total cost. For both of the two cases in Fig. 5a, the total cost
can converge to a point which is near to the optimum, and it
can be approximately guaranteed by Theorem 1.

After that, we compare the user-perceived delay in the
testbed and simulation with different workloads of tasks, as
shown in Fig. 5b. We observe that the measured user-per-
ceived delay in the testbed is slightly higher than that in the
simulation because we ignore the MAC-level/queuing
delays and the instability of the edge server computing
capacity in our model, which can be captured in the testbed-
based experiment.

Comparisons in Total Cost. We then compare the total cost
induced in somevideo-related services (e.g., vehicle counting,
pedestrian counting and object detection) and text-related
services (e.g., word counting andword finding)with different
estimated workloads of tasks. As shown in Fig. 6a, we notice
that the variance of cost in some video-related services is sig-
nificantly greater than that in the text-related services because
the video content usually changes a lot, which will result in
the edge server usage cost varyingmuchmore.

We study the changes in total cost with varying work-
loads of tasks, delay requirements and workload upper lim-
its in the task offloading system. In Fig. 6b, whenwe increase
the average workload of tasks, the total costs obtained with
the 5 schemes also rise, due to the fact that more task work-
loads lead to higher server usage cost and energy consump-
tion cost. Furthermore, as there are workload upper limits
for each edge server, more servers are needed to complete
the increased workloads, which results in higher service
placement cost. As shown in Fig. 6c, when the average delay
requirement is increased, the total costs obtained with the 5
schemes are reduced since edge users havemore edge server
choices to make the total cost smaller. Besides, when the
delay requirements are relaxed to a certain extent, the total
cost remains almost constant. Fig. 6d demonstrates the
impacts of varying workload upper limit average on total
cost. When the workload upper limit average is varying
from 700 Gcycles to 1100 Gcycles, the total cost goes down,
because increased workload upper limit contributes to com-
pleting more workload on each edge server, which saves the
cost of placing extra services on other edge servers. In Sec-
tion 6, it is proven that our proposed algorithm LOCUS

Fig. 4. Illustration of our testbed.
Fig. 5. Gradually converged total cost and user-perceived delay in
testbed and simulation.
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achieves an approximation ratio. Actually, as shown in the
experiment results, the total cost gap between LOCUS and
the optimal scheme OPTS is very small. Additionally, in
terms of total cost, our design LOCUS always performs
much better than the other methods RRS, GS andAS.

Comparisons in Cost Components. We next focus on the
three components (i.e., service placement cost, server usage
cost and energy consumption cost) in total cost with varying
numbers of users, servers and services. From Fig. 7, we can
see that server placement cost is the main contributor to the
total cost obtained with RRS and AS. For scheme RRS, each
service placement decision variable ym;s is first relaxed to
continuous variable in [0,1], thus it helps to select the better
user allocation decisions which lead to lower server usage
and energy consumption cost. Similarly, before AS solves
the considered problem, it assumes all services are placed at
each server. Thus, better user allocation decisions can be

determined to minimize the server usage and energy con-
sumption cost. Furthermore, the total cost of LOCUS and
OPTS are lower since they both optimize the trade-off
among service placement cost, server usage cost and energy
consumption cost via the joint optimization of service place-
ment and user allocation.

Comparisons in Calculation Time. We finally compare the
time taken by different schemes to calculate the service
placement and user allocation decisions with varying num-
bers of users, servers and services. As demonstrated in
Fig. 8, when we increase the numbers of users, edge servers
and services, more calculation time is needed to tackle the
considered problem using RRS, OPTS and LOCUS. More-
over, it can be clearly seen that the calculation time OPTS
takes to obtain the service placement and user allocation
decisions grows the fastest, because it needs to find the opti-
mal overall decision in the solution space of exponential
size. For example, as shown in Fig. 8b, when the user num-
ber varies from 12 to 40, the added calculation time of OPTS
is nearly 104 seconds, while the added calculation time of
LOCUS is only hundreds of seconds. Therefore, our pro-
posed algorithm LOCUS has good stability and scalability
compared with others in different scenarios.

8 CONCLUSION AND FUTURE WORK

In this paper, we investigate the user-perceived delay-aware
service placement and user allocation problem in edge envi-
ronment. We present the modeling of MEC-enabled network,
user-perceived delay and total cost of task offloading system,
based on which we formulate the user-perceived delay-aware
service placement and user allocation problem as amixed inte-
ger linear programming problem which aims at minimizing
the total cost of task offloading system.Due to the intractability
of our considered problem, we design a polynomial-time
local-search based algorithm LOCUSwhich achieves provable
guaranteed performance. We finally compare our proposed

Fig. 6. Changes in total cost with varying workloads of tasks, delay
requirements and workload upper limits.

Fig. 7. Three components in total cost with varying numbers of users, servers and services.

Fig. 8. Time taken by different schemes with varying numbers of users, servers and services.
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algorithm with existing methods and show the good perfor-
mance of LOCUS through experiments. However, there are
still a few limitations in our work which needs future research
effort. First,more accurate systemmodel design (e.g., consider-
ing the delay of task queuing at the edge server) would help to
determine the better service placement and user allocation
decision. Second, applying our proposed algorithm to dyna-
mic service placement requires extra handling of the service
placement decisions in different time slots.
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